Skip to main content

Apache Hadoop

The project includes these modules:
  • Hadoop Common: The common utilities that support the other Hadoop modules.
  • Hadoop Distributed File System (HDFS™): A distributed file system that provides high-throughput access to application data.
  • Hadoop YARN: A framework for job scheduling and cluster resource management.
  • Hadoop MapReduce: A YARN-based system for parallel processing of large data sets.
Other Hadoop-related projects at Apache include:
  • Ambari™: A web-based tool for provisioning, managing, and monitoring Apache Hadoop clusters which includes support for Hadoop HDFS, Hadoop MapReduce, Hive, HCatalog, HBase, ZooKeeper, Oozie, Pig and Sqoop. Ambari also provides a dashboard for viewing cluster health such as heatmaps and ability to view MapReduce, Pig and Hive applications visually alongwith features to diagnose their performance characteristics in a user-friendly manner.
  • Avro™: A data serialization system.
  • Cassandra™: A scalable multi-master database with no single points of failure.
  • Chukwa™: A data collection system for managing large distributed systems.
  • HBase™: A scalable, distributed database that supports structured data storage for large tables.
  • Hive™: A data warehouse infrastructure that provides data summarization and ad hoc querying.
  • Mahout™: A Scalable machine learning and data mining library.
  • Pig™: A high-level data-flow language and execution framework for parallel computation.
  • Spark™: A fast and general compute engine for Hadoop data. Spark provides a simple and expressive programming model that supports a wide range of applications, including ETL, machine learning, stream processing, and graph computation.
  • Tez™: A generalized data-flow programming framework, built on Hadoop YARN, which provides a powerful and flexible engine to execute an arbitrary DAG of tasks to process data for both batch and interactive use-cases. Tez is being adopted by Hive™, Pig™ and other frameworks in the Hadoop ecosystem, and also by other commercial software (e.g. ETL tools), to replace Hadoop™ MapReduce as the underlying execution engine.
  • ZooKeeper™: A high-performance coordination service for distributed applications.

Comments

Popular posts from this blog

Checking XML Validity

Checking XML Validity When you edit XML, it is a good idea to use an XML-aware editor to be sure that your syntax is correct and your XML is well-formed. You can also use the xmllint utility to check that your XML is well-formed. By default, xmllint re-flows and prints the XML to standard output. To check for well-formedness and only print output if errors exist, use the command xmllint -noout filename.xml .

Deprecated API Versus New API

Seq No Deprecated API NEW API 1 Release 0.20 Release 1.X and 2.X 2 Interfaces (means you can add a method with default implementation to an abstract class without breaking old implementations of class Abstract classes For Example Mapper and Reducer interfaces in Old API are abstract classes in new API 3 Package org.apache.hadoop.mapred org.apache.hadoop.mapreduce 4 JobConf,the OutputCollector and the Reporter Context Object   (allows the user code to communicate with MapReduce System) 5 Both API’s, Key-Value record pairs are pushed to mapper and reducer In addition execution flow can be controlled by run() method 6 Job Control by JobClient class Job class 7 Output file are named as Part-nnnnn Part-m-nnnnn( mapper) , part-r-nnnnn(reducer) 8 ...